Maths at Newbold and

Tredington Primary

School

How to help your child
at home

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cabes to add two numbers together as a group or in a bar.		$\begin{aligned} & 4+3=7 \\ & 10=6+4 \\ & \begin{array}{l} \text { Use the partgart } \\ \text { mhole dagram as } \\ \text { shown above to } \\ \text { move into the } \\ \text { abstract } \end{array} \end{aligned}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answor.	$5+12=17$ Place the larger number in your head and count on the smatler number to find your answer.

Column methodregrouping

Mave con numbers on a prace value grid.

Add up the unts and exchange 10 ones for one 10.

Add up the rest of the columns. exchanging the 10 counters from one column for the next place value column unti overy column has beth absed.

This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 ters equal 100 .

As children move on to decimals. money and decimal place value courters can be used to support learning.

Unigren can craw a pictoras representanion of vee columns and place value counters to further support their learning and understanding.

Start by parttioning the numbers before moving on to cleaty show the exchange below the addition.

As the children +85

$\begin{array}{l}\text { move on, } \\ \text { introduce }\end{array} \quad 621$

decimals wth
the same number of decimal places and different. Money can be used here.
72.8
$+54.6$

2	3	3	6	1
3	9	8	0	
5	9	7	7	0
+	1	3	0	8
9	3	5	1	1
2	1	2		

Subtraction

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away anoe	Use physical cojects, courters, Cubes	Cross out drawn objects to show what has been taken amay.	$18-3=15$
Column method without regrouping	- $/ / /$ \cdots $1 \mid H$ $/ / / /$ Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number frst.		$\begin{gathered} 47-24=23 \\ -\frac{4057}{20+3} \\ \hline \end{gathered}$ This will lead to a clear written column subtraction. $\begin{array}{r} 32 \\ -\frac{12}{20} \\ -20 \end{array}$
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easly? I need to exchange one of my tens for ten ones.	Dras the courters onte a place value grid and show what you have taken away by crossing the counters out as wel as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just wring the numbers as shown here shows that the child understands the method and knows when to exchangelregroup.	Children can start Pheir formal writien method by partitoning the number into clear place value columns. Moving forward the children use a more compact method.

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activites to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	 Partition a number and then double each pat before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in mutiples.	Count in mutiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25, 30

Find the difference	Compare amourts and objects to find the differencte. Use cubes to buld towers or make bars to find the diference Use basic bar models with itoms to find the difference	Court on to find the difference. Comporison Itor Models Draw bars to find the difference between 2 numbers. fing te alferee in ape betaten tren	Hannah has 23 sandwiches. Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part Part Whole Model	Link to adorition- use the part whole model to help explain the inverse between additon and subtraction. If 10 is the whole and 6 is one of the parts. What is the ober part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	10 Move to using numbers within the part whole model.
Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then thkeaway one more so you have taken awaly 5. You are left with the answer of 9.	$13-7=6$ [3] Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 allogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take oft?

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups		Chidren use pictures or shapes to share quanttes． $8+2=4$	Share 9 buns between three poopie． $9+3=3$
Division as grouping	Divide quanties into equal groups． Use cubes，counters，objects or place value counters to aid understanding． $96 \cdot 3=32$	Use a number line to show jumps in groups．The number of jumps equals the number of groups． Think of the bar as a whole．Splt it into the number of groups you are dividing by and work out how many would be within each group．	$28+7=4$ Divide 28 into 7 groups． How many are in each group？

Short division	 Use place value counters to divide using the bus stop method alongside $42+3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14.	Students can continue to use drawn diagrams with dots or circles to heip them divide numbers into equal groups. Encourage them to move towards counting in mutiples to divide more efficiently.	Begin with divisions that divide equally wth no remainder. Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately.

Long division	 Exchange 2 thousand for 20 hundreds. $1 2 \longdiv { 2 5 4 4 }$ How many groups of 12 are in 25 husdreds? 2 groups. Circle themWe have grouped 24 hundreds so can take them off and we are left wth one. $\begin{gathered} 1 2 \longdiv { 2 2 } \\ \frac{24}{2544} \\ 1 \end{gathered}$ Exchange the one hundred for ten tens 30 now we have 14 tens. How many groups of 12 are in 14 ? 1 remainder 2 Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 2 are in 2472	Instead of using physical counters, students can draw the counters and pircle the groups on a whiteboard or in their books. Use this method to explain what is happening and as soon as they have understood what move on to the abstract method as this can be a time consuming process.	

Ways to help your child at home

Games

Playing games such as Monopoly, darts, snooker etc can help children to become faster at mental maths calculations. Many card and dice games encourage children to calculate mentally, such as Yahtzee, Rummy, Pontoon amongst others.

To help with number strategies

- Practise the times tables for their year group expectations and their related division facts. Children need to know their 2, 5 and 10 tables by the end of Year 2 and are expected to recall all the way up to $\mid 2 \times I 2$ with their divisions by the end of year 4. These need to be fluent and answered instantaneously for them to be secure at them.
- Find opportunities for children to work mentally - adding and subtracting within the supermarket, counting out items at home i.e laying the table.
- Doubling and halving within opportunities i.e. I need 10 apples to feed 4 people, how many for 2 people?
- For older children, play matching pairs between fractions, decimals and percentages on blank playing cards.
- Finding different ways to answer mental questions i.e $(52+35=87,40+47=87,30+$ $57=87$)

To help with money problems

- Allow children to experience the use of real money.
- Asking questions of children such as which is cheaper/more expensive during outings.
- Use a catalogue like Argos and ask children to choose 5 items under $£ 20$. Calculate how much they cost and the change from $£ 100$ (for older children).

To help with shape and measures

- Look at recipes and allow children to experience weighing, looking at heavier and lighter and reading of scales.
- Encourage children to work at reading the time or using the language of time estimating the length of time it takes to achieve a task.
- Involve children with estimating and reading timetables for buses, trains etc.
- Spotting shapes and patterns in everyday life - in nature, around the house etc.
- Encourage children to measure areas using standard units of measure ($\mathrm{cm}, \mathrm{m}, \mathrm{km}$) as well as non standard (2 pencil lengths long, 3 books high etc).

End of year expectations for each year group.

These are some brief outlines for each year group of what is expected of a child by the end of the year in maths.

	Mathematics	
Number/Calculation	Geometry \& Measures	
-Count to / across 100	- Use common vocabulary for	- Describe position \& movement,
-Count in $1 \mathrm{~s}, 2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s -Identify 'one more' and 'one	comparison, e.g. heavier, taller, full, longest, quickest	including half and quarter turns
- Identify 'one more' and 'one -Read \& write numbers to 20	*Begin to measure length,	Fractions
-Use language, e.g. 'more than', 'most'	capacity, weight \bullet Recognise coins \& notes	-Recognise \& use $1 / 2$ \& \%
-Use +, - and = symbols	-Use time \& ordering vocabulary	
-Know number bonds to 20	-Tell the time to hour/half-hour	
*add and subtract one-digit and two-digit numbers to 20 , including	-Use language of days, weeks, months \& years	
zero -Solve one-step problems, includin	-Recognise \& name common 2-d	
simple arrays	*Order \& arrange objects	

Mathematics		
Number/Calculation	Geometry \& Measures	Fractions \& decimals
-Learn 3, 4 \& 8x tabl	-Measure \& calculate with metric	-Use \& count in tenths
- Secure place value to 100	measures	-Recognise, find \& write fractions
-Mentally add \& subtract units, tens or hundreds to numbers of up to 3 digits	-Measure simple perimeter -Add/subtract using money in context	-Recognise some equivalent fractions -Add/subtract fractions up to <1
-Written column addition \& subtraction	-Use Roman numerals up to XII; tell time	- Order fractions with common denominator
-Solve number problems, including multiplication \& simple division and missing number problems	\bullet Calculate using simple time problems -Draw 2-d / Make 3-d shapes	Data - Interpret bar charts \& pictograms
-Use commutativity to help calculations	-Identify and use right angles -Identify horizontal, vertical, perpendicular and parallel lines	\rightarrow

	Mathematics	
Jumber/Calculation	Geometry \& Measures Compare 2-d shapes, including	Fractions \& decimals
Know all tables to 12×12	quadrilaterals \& triangles	-Recognise tenths \& hundredths - Identify equivalent fractions
Secure place value to 1000	\bullet Find area by counting squares	
Use negative whole numbers	*Calculate rectangle perimeters	-Add \& subtract fractions with common denominators
Round numbers to nearest 10,100	-Estimate \& calculate measures	
or 1000	-Identify acute, obtuse \& right	- Recognise common equivalents
Use Roman numerals to 100 (C)	angles	
Column addition \& subtraction up	*ldentify symmetry	numbers
to 4 digits	-Use first quadrant coordinates	-Solve money problems
Multiply \& divide mentally	- Introduce simple translations	
Use standard short multiplication	Data	
	\bullet Use bar charts, pictograms \& line graphs	

Compare 2-d shapes, including quadrilaterals \& triangles
-Find area by counting squares

- Calculate rectangle perimeters
- Estimate \& calculate measures
-Identify acute, obtuse \& right angles
-Identify symmetry
-Use first quadrant coordinates
-Introduce simple translations
-Use bar charts, pictograms \& line graphs

Mathematics

Geometry \& Measures

-Convert between different units
-Calculate perimeter of composite shapes \& area of rectangles

- Estimate volume \& capacity
-Identify 3-d shapes
-Measure \& identify angles
-Understand regular polygons
Reflect \& translate shapes
Data
-Interpret tables \& line graphs
-Solve questions about line graphs

Fractions

-Compare \& order fractions
-Add \& subtract fractions with common denominators, with mixed numbers

- Multiply fractions by units
-Write decimals as fractions
-Order \& round decimal numbers
- Link percentages to fractions \& decimals

Number/Calculation	Mathematics Geometry \& Measures	
	Geometry \& Measures	Fractions, decimals \& percentages
	-Confidently use a range of measures \& conversions	-Compare \& simplify fractions -Use equivalents to add fractions
	-Calculate area of triangles /	-Multiply simple fractions
-All written methods, including long division	parallelograms	-Divide fractions by whole
	-Use area \& volume formulas	numbers
- Use order of operations (not indices)	-Classify shapes by properties -Know and use angle rules	-Solve problems using decimals \& percentages
-Identify factors, multiples \& primes - Solve multi-step number problems	-Translate \& reflect shapes, using	-Use written division up to 2dp
	all four quadrants	
Algebra -Introduce simple use of unknowns	Data	
	-Use pie charts	
	-Calculate mean averages	

